A Modified Copolymerization Equation for Three-Component Systems

A. KUMAR, Indian Lac Research Institute, Namkum, Ranchi, Bihar, India

Synopsis

A modified copolymerization equation substantiated by experimental evidence has been proposed for tricomponent systems.

To eliminate the complexities and assumptions made in the integration of the rate equation put forward by Alfrey and Goldfinger¹ and Walling and Briggs² for tri- and multicomponent copolymerization systems an attempt has been made in this paper to modify their equations.

It is known that in the copolymerization of three monomers, M_1 , M_2 , and M_3 , the chain propagation reactions are

$$M_{1}^{*} + M_{1} \xrightarrow{K_{11}} M_{1}^{*} + M_{1}$$

$$M_{1}^{*} + M_{2} \xrightarrow{K_{12}} M_{2}^{*} + M_{1}$$

$$M_{1}^{*} + M_{3} \xrightarrow{K_{13}} M_{3}^{*} + M_{1}$$

$$M_{2}^{*} + M_{1} \xrightarrow{K_{21}} M_{1}^{*} + M_{2}$$

$$M_{2}^{*} + M_{2} \xrightarrow{K_{22}} M_{2}^{*} + M_{2}$$

$$M_{2}^{*} + M_{3} \xrightarrow{K_{33}} M_{3}^{*} + M_{2}$$

$$M_{3}^{*} + M_{1} \xrightarrow{K_{32}} M_{1}^{*} + M_{3}$$

$$M_{3}^{*} + M_{2} \xrightarrow{K_{33}} M_{2}^{*} + M_{3}$$

where M_1^* , M_2^* and M_3^* are different growing chain ends. Therefore, the rates of disappearance of the monomers, M_1 , M_2 , and M_3 , would be as follows:

$$-dM_{1}/dt = K_{11}M_{1}*M_{1} + K_{21}M_{2}*M_{1} + K_{31}M_{3}*M_{1}$$

$$= M_{1}(K_{11}M_{1}* + K_{21}M_{2}* + K_{31}M_{3}*) \quad (1)$$

$$-dM_{2}/dt = K_{12}M_{1}*M_{2} + K_{22}M_{2}*M_{2} + K_{32}M_{3}*M_{2}$$

$$= M_{2}(K_{12}M_{1}* + K_{22}M_{2}* + K_{32}M_{3}*) \quad (2)$$

$$-dM_{3}/dt = K_{13}M_{1}*M_{3} + K_{23}M_{2}*M_{3} + K_{33}M_{3}*M_{3}$$

$$= M_{3}(K_{13}M_{1}* + K_{23}M_{2}* + K_{33}M_{3}*) \quad (3)$$

A. KUMAR

Applying the conventional steady-state assumption to each radical, we have the following.

For M_1^* :

$$K_{12}M_1^*M_2 + K_{13}M_1^*M_3 = K_{21}M_2^*M_1 + K_{31}M_3^*M_1$$
(4)

 \mathbf{or}

$$K_{21}M_2^* + K_{31}M_3^* = (M_1^*/M_1)(K_{12}M_2 + K_{13}M_3)$$
 (4a)

For M_2^* :

$$K_{21}M_2^*M_1 + K_{23}M_2^*M_3 = K_{12}M_2M_1^* + K_{32}M_3^*M_2$$
(5)

or

$$K_{12}M_1^* + K_{32}M_3^* = (M_2^*/M_2)(K_{21}M_1 + K_{23}M_3)$$
(5a)

For M_3^* :

$$K_{31}M_3^*M_1 + K_{32}M_3^*M_2 = K_{13}M_1^*M_3 + K_{23}M_2^*M_3$$
(6)

or

$$K_{13}M_1^* + K_{23}M_2^* = (M_3^*/M_3)(K_{31}M_1 + K_{32}M_2)$$
 (6a)

Equations (4), (5), and (6) are replicas of the equations of Walling and Briggs.² From eqs. (1), (2), (3), (4), (5a), and (6a) we have the following.

$$-dM_{1}/dt = M_{1}[K_{11}M_{1}^{*} + (M_{1}^{*}/M_{1})(K_{12}M_{2} + K_{13}M_{3})]$$

= $M_{1}^{*}(K_{11}M_{1} + K_{12}M_{2} + K_{13}M_{3})$ (7)

$$-dM_2/dt = M_2[K_{22}M_2^* + (M_2^*/M_2)(K_{21}M_1 + K_{23}M_3)] = M_2^*(K_{21}M_1 + K_{22}M_2 + K_{23}M_3)$$
(8)

$$-dM_{3}/dt = M_{3}[(M_{3}^{*}/M_{3})(K_{31}M_{1} + K_{32}M_{2}) + K_{33}M_{3}^{*}] = M_{3}^{*}[K_{31}M_{1} + K_{32}M_{2} + K_{33}M_{3}]$$
(9)

From eqs. (4), (5), and (6) we have the following.

$$M_1^*(K_{12}M_2 + K_{13}M_3) - K_{21}M_2^*M_1 - K_{31}M_3^*M_1 = 0 \qquad (10)$$

$$-K_{12}M_1^*M_2 + M_2^*(K_{21}M_1 + K_{23}M_3) - K_{32}M_3^*M_2 = 0 \qquad (11)$$

$$-K_{13}M_1^*M_3 - K_{23}M_2^*M_3 + M_3^*(K_{31}M_1 + K_{32}M_2) = 0 \qquad (12)$$

We know that

$$a_{1}X + b_{1}Y + c_{1}Z = 0$$

$$a_{2}X + b_{2}Y + c_{2}Z = 0$$

$$a_{3}X + b_{3}Y + c_{3}Z = 0$$

$$\begin{array}{l} X/Y = (b_1c_3 - b_3c_1 - b_1c_2 + b_2c_1)/(a_1c_2 - a_2c_1 - a_1c_3 + a_3c_1) \\ X/Z = (b_3c_1 - b_1c_3 - b_2c_1 + b_1c_2)/(a_1b_2 - a_2b_1 - a_1b_3 + a_3b_1) \\ Y/Z = (a_3c_1 - a_1c_3 - a_2c_1 + a_1c_2)/(a_2b_1 - a_1b_2 - a_3b_1 + a_1b_3) \end{array}$$

1854

Let X, Y, and Z be equal to M_1^* , M_2^* , and M_3^* , respectively. Then,

$$\begin{array}{ll} a_1 = (K_{12}M_2 + K_{13}M_3), & b_1 = -K_{21}M_1, & \text{and } c_1 = -K_{31}M_1\\ a_2 = -K_{12}M_2, & b_2 = (K_{21}M_1 + K_{23}M_3), & \text{and } c_2 = -K_{32}M_2\\ a_3 = -K_{13}M_3, & b_3 = -K_{23}M_3, & \text{and } c_3 = (K_{31}M_1 + K_{32}M_2) \end{array}$$

Therefore,

$$M_{1}^{*}/M_{2}^{*} = M_{1}(K_{21}K_{31}M_{1} + K_{21}K_{32}M_{2} + K_{23}K_{31}M_{3})/M_{2}(K_{12}K_{31}M_{1} + K_{12}K_{32}M_{2} + K_{13}K_{32}M_{3})$$
(13)

$$M_{1}^{*}/M_{3}^{*} = M_{1}(K_{21}K_{31}M_{1} + K_{21}K_{32}M_{2} + K_{23}K_{31}M_{3})/M_{3}(K_{13}K_{21}M_{1} + K_{12}K_{23}M_{2} + K_{13}K_{23}M_{3})$$
(14)

$$M_{2}^{*}/M_{3}^{*} = M_{2}(K_{12}K_{31}M_{1} + K_{12}K_{32}M_{2} + K_{13}K_{32}M_{3})/M_{3}(K_{13}K_{21}M_{1} + K_{12}K_{23}M_{2} + K_{13}K_{23}M_{3})$$
(15)

Again,

$$a_1X + b_1Y + c_1Z = 0$$

$$a_2X + b_2Y + c_2Z = 0$$

$$a_3X + b_3Y + c_3Z = 0$$

$$a_1(b_2c_3 - b_3c_2) + b_1(c_2a_3 - c_3a_2) + c_1(a_2b_3 - a_3b_2) = 0$$

 \mathbf{But}

$$a_1 \neq 0, \quad b_1 \neq 0, \quad \text{and } c_1 \neq 0$$

Therefore,

$$b_{2}c_{3} - b_{3}c_{2} = 0 \quad \text{or} \quad b_{2}/b_{3} = c_{2}/c_{3}$$

$$c_{2}a_{3} - c_{3}a_{2} = 0 \quad \text{or} \quad c_{2}/c_{3} = a_{2}/a_{3}$$

$$a_{2}b_{3} - a_{3}b_{2} = 0 \quad \text{or} \quad a_{2}/a_{3} = b_{2}/b_{3}$$

$$\therefore a_{2}/a_{3} = b_{2}/b_{3} = c_{2}/c_{3}$$

$$K_{12}M_{2}/-K_{13}M_{3} = (K_{21}M_{1} + K_{23}M_{3})/-K_{23}M_{3}$$

$$.. - \kappa_{12}M_{2/} - \kappa_{13}M_{3} = (\kappa_{21}M_{1} + \kappa_{23}M_{3}) - \kappa_{23}M_{3}$$

= $-K_{32}M_{2/}(K_{31}M_{1} + K_{32}M_{2})$ (16)

From eq. (16) we have

(i)
$$K_{12}K_{23}M_2 = -K_{13}K_{21}M_1 - K_{13}K_{23}M_3$$

or

.

$$K_{13}K_{21}M_1 + K_{12}K_{23}M_2 + K_{13}K_{23}M_3 = 0$$
(17)
(ii) $K_{21}K_{31}M_1^2 + K_{23}K_{31}M_1M_3 + K_{21}K_{32}M_1M_2 = 0$

or

$$M_1(K_{21}K_{31}M_1 + K_{21}K_{32}M_2 + K_{23}K_{31}M_3) = 0$$

But $M_1 \neq 0$ (N.B.: M_1 is equal to zero only on completion of the reaction). Therefore

$$K_{21}K_{31}M_1 + K_{21}K_{32}M_2 + K_{23}K_{31}M_3 = 0$$
(18)

and

(iii)
$$-K_{12}K_{31}M_1M_2 - K_{12}K_{32}M_2^2 = K_{13}K_{32}M_2M_3$$

or

$$K_{12}K_{31}M_1 + K_{12}K_{32}M_2 + K_{13}K_{32}M_3 = 0$$
⁽¹⁹⁾

From eqs. (17), (18), and (19);

$$K_{12}K_{31}M_1 + K_{12}K_{32}M_2 + K_{13}K_{32}M_3 = K_{13}K_{21}M_1 + K_{12}K_{23}M_2 + K_{13}K_{23}M_3 = K_{21}K_{31}M_1 + K_{21}K_{32}M_2 + K_{23}K_{31}M_3$$
(20)

From eqs. (13), (14), (15), and (20) the following equations are deduced:

$$M_1^*/M_2^* = M_1/M_2$$
, $M_1^*/M_3^* = M_1/M_3$ and $M_2^*/M_3^* = M_2/M_3$
 $\therefore M_2^* = (M_2/M_1)/M_1^*$ (21)

and
$$M_3^* = (M_3/M_1)/M_1^*$$
 (22)

From eqs. (7), (8), (9), (21), and (22) the following equations are deduced:

$$\begin{aligned} -dM_1/dt &= M_1^* (K_{11}M_1 + K_{12}M_2 + K_{13}M_3) \\ -dM_2/dt &= (M_2/M_1)(K_{21}M_1 + K_{22}M_2 + K_{23}M_3)M_1^* \\ -dM_3/dt &= (M_3/M_1)(K_{31}M_1 + K_{32}M_2 + K_{33}M_3)M_1^* \end{aligned}$$

Therefore

$$\begin{aligned} -dM_1/(K_{11}M_1 + K_{12}M_2 + K_{13}M_3) &= M_1^*dt \\ -(dM_2 \cdot M_1)/M_2(K_{21}M_1 + K_{22}M_2 + K_{23}M_3) &= M_1^*dt \\ -(dM_3 \cdot M_1)/M_3(K_{31}M_1 + K_{32}M_2 + K_{33}M_3) &= M_1^*dt \end{aligned}$$

Therefore

$$\frac{dM_1/(K_{11}M_1 + K_{12}M_2 + K_{13}M_3)}{= (dM_2 \cdot M_1)/M_2(K_{21}M_1 + K_{22}M_2 + K_{23}M_3)}{= (dM_3 \cdot M_1)/M_3(K_{31}M_1 + K_{32}M_2 + K_{33}M_3)}$$

or

$$dM_{1}/M_{1}(K_{11}M_{1} + K_{12}M_{2} + K_{13}M_{3}) = dM_{2}/M_{2}(K_{21}M_{1} + K_{22}M_{2} + K_{23}M_{3}) = dM_{3}/M_{3}(K_{31}M_{1} + K_{32}M_{2} + K_{33}M_{3})$$
(23)

From eqs. (17), (18), and (19) we have

$$K_{12}M_2 + K_{13}M_3 = -(K_{13}K_{21}/K_{23})M_1$$
(24)

$$K_{21}M_1 + K_{23}M_3 = -(K_{21}K_{32}/K_{31})M_2$$
(25)

$$K_{31}M_1 + K_{32}M_2 = -(K_{13}K_{32}/K_{12})M_3$$
(26)

From eqs. (23), (24), (25), and (26) we have

$$\frac{dM_1/M_1[K_{11}M_1 - (K_{13}K_{21}/K_{23})M_1]}{= dM_2/M_2[K_{22}M_2 - (K_{21}K_{32}/K_{31})M_2]} = dM_3/M_3[K_{33}M_3 - (K_{13}K_{32}/K_{12})M_3]$$

1856

or

$$[K_{23}/(K_{11}K_{23} - K_{13}K_{21})](dM_1/M_1^2)$$

= $[K_{31}/(K_{22}K_{31} - K_{21}K_{32})](dM_2/M_2^2)$
= $[K_{12}/(K_{12}K_{33} - K_{13}K_{32})](dM_3/M_3^2)$

On integration we have

$$[K_{23}/(K_{11}K_{23} - K_{13}K_{21})][1/(M_1) - 1/(M_1)_0]$$

= $[K_{31}/(K_{22}K_{31} - K_{21}K_{32})][(1/(M_2) - 1/(M_2)_0]$
= $[K_{12}/(K_{12}K_{33} - K_{13}K_{32})][1/(M_3) - 1/(M_3)_0]$ (27)

Fig. 1. Plots of $1/(M)_0$ versus 1/(M) for copolymerization of three-component system consisting of styrene \odot , methyl methacrylate \triangle , and acrylonitrile \Box .

where $(M_1)_0$, $(M_2)_0$, and $(M_3)_0$ are the initial concentrations of the monomers and (M_1) , (M_2) , and (M_3) are their respective concentrations after time t. In this equation one part is equivalent to another part.

Let us suppose that

$$\begin{split} [K_{23}/(K_{11}K_{23} - K_{13}K_{21})][1/(M_1) - 1/(M_1)_0] \\ &= [K_{31}/(K_{22}K_{31} - K_{21}K_{32})][1/(M_2) - 1/(M_2)_0] \\ &= [K_{12}/(K_{12}K_{33} - K_{13}K_{32})][1/(M_3) - 1/(M_3)_0] = A \\ K_{23}/(K_{11}K_{23} - K_{13}K_{21}) = X \\ K_{31}/(K_{22}K_{31} - K_{21}K_{32}) = Y \\ K_{12}/(K_{12}K_{33} - K_{13}K_{32}) = Z \end{split}$$

Then

$$[1/(M_1) - 1/(M_1)_0] = A/X \text{ or } 1/(M_1) = A/X + 1/(M_1)_0$$
(28)
$$[1/(M_2) - 1/(M_2)_0] = A/Y \text{ or } 1/(M_2) = A/Y + 1/(M_2)_0$$
(29)

$$[1/(M_3) - 1/(M_3)_0] = A/Z$$
 or $1/(M_3) = A/Z + 1/(M_3)_0$ (30)

In these equations A, X, Y, and Z are constants. Therefore, the respective plots of $1/(M_1)$, $1/(M_2)$, and $1/(M_3)$ versus $1/(M_1)_0$, $1/(M_2)_0$, and $1/(M_3)_0$ would be linear. To test the validity of these equations, values of (M_1) , (M_2) , and (M_3) and $(M_1)_0$, $(M_2)_0$, and $(M_3)_0$ in terms of mole per cent were computed from the data of experiments 4, 5, 6, and 7 of Walling and Briggs.² Plots of the data are shown in Figure 1. Linear plots support the plausibility of these equations. Further, it may be added that the equations would be equally applicable in cases in which composition and time of reaction are variant or one of them is variable and other constant.

References

1. T. Alfrey and G. Goldfinger, J. Chem. Phys., 12, 322 (1944).

2. C. Walling and E. R. Briggs, J. Am. Chem. Soc., 67, 1774 (1945).

Received April 19, 1967 Revised December 30, 1967